HER-2/neu transcriptionally activates Jab1 expression via the AKT/beta-catenin pathway in breast cancer cells.

نویسندگان

  • Ming-Chuan Hsu
  • Hui-Chiu Chang
  • Wen-Chun Hung
چکیده

Jab1 is a co-activator of activating protein-1 (AP-1) transcription factor and the fifth subunit of the constitutive photomorphogenesis 9 (COP9) signalosome, which has been shown to mediate nuclear exportation and ubiquitin-dependent degradation of the tumor suppressor p27(Kip1). Jab1 is overexpressed in several types of human cancer. However, de-regulation of Jab1 gene expression in cancer cells is largely unclear. In this study, we reported that expression of Jab1 was stimulated by HER-2/neu oncogene via transcriptional activation. Promoter deletion and mutation analysis indicated that HER-2/neu stimulated Jab1 via the T cell factor (TCF) binding site located at the -380/-368 region of the human Jab1 promoter. DNA affinity precipitation assay and chromatin immunoprecipitation assay verified that binding of beta-catenin and TCF-4 to this consensus site was increased by HER-2/neu. In addition, dominant-negative mutant of TCF significantly attenuated the stimulatory effect of HER-2/neu. We also demonstrated that HER-2/neu increased beta-catenin/TCF-mediated Jab1 expression via the AKT signaling pathway because chemical inhibitor or dominant-negative mutant of AKT effectively attenuated the stimulatory action of HER-2/neu. IGF-I, which is a well-known AKT activator, also up-regulated the expression of Jab1 in NIH/3T3 and MCF-7 cells. Knockdown of Jab1 by small interfering RNA (siRNA) preferentially inhibited proliferation of HER-2/neu-overexpressing breast cancer cells. Taken together, our results suggest that HER-2/neu transcriptionally activates Jab1 expression to promote proliferation of breast cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BKCa channel inhibitor modulates the tumorigenic ability of hormone-independent breast cancer cells via the Wnt pathway

In breast cancers, the large conductance Ca2+ and voltage sensitive K+ (BKCa) channels have been hypothesized to function as oncoproteins, yet it remains unclear how inhibition of channel activity impacts oncogenesis. We demonstrated herein that iberiotoxin (IbTX), an inhibitor of BKCa channels, differentially modulated the in vitro tumorigenic activities of hormone-independent breast cancer ce...

متن کامل

Inhibition of cell growth by BrMC through inactivation of Akt in HER-2/neu-overexpressing breast cancer cells

We previously reported that chrysin (ChR) and its analogs induced cell cycle arrest and apoptosis in human estrogen receptor-positive/-negative breast cancer cells. However, it was unknown whether 8-bromo-7-methoxychrysin (BrMC), a novel synthetic ChR analog, inhibited the cell growth of human epidermal growth factor receptor 2 (HER-2)/neu-overexpressing breast cancers. In the present study, it...

متن کامل

GRB-7 facilitates HER-2/Neu-mediated signal transduction and tumor formation.

Growth factor receptor-bound protein-7 (GRB-7), an adaptor molecule, can interact with multiple signal transduction molecules. GRB-7 is amplified concurrently with HER-2/Neu in most, if not all, of breast cancer with chromosome 17q11-21 amplification. GRB-7 gene amplification is associated with RNA over-expression. We show GRB-7 protein is over-expressed by immunoblotting in breast cancer cell ...

متن کامل

Inhibition of Cell Growth and Induction of Apoptosis by Antrodia camphorata in HER-2/neu-Overexpressing Breast Cancer Cells through the Induction of ROS, Depletion of HER-2/neu, and Disruption of the PI3K/Akt Signaling Pathway

Previously, we demonstrated that a submerged fermentation culture of Antrodia camphorata (AC) promotes cell-cycle arrest and apoptosis in human estrogen receptor-positive/negative breast cancer cells. However, whether AC is effective against HER-2/neu-overexpressing breast cancers has not been thoroughly elucidated. In the present study, we showed that AC exhibited a significant cytotoxic effec...

متن کامل

The pan-PI3K inhibitor GDC-0941 activates canonical WNT signaling to confer resistance in TNBC cells: resistance reversal with WNT inhibitor

The pan-PI3K inhibitors are one treatment option for triple-negative breast cancer (TNBC). However, this treatment is ineffective for unknown reasons. Here, we report that aberrant expression of wingless-type MMTV integration site family (WNT) and activated WNT signals, which crosstalk with the PI3K-AKT-mTOR signaling pathway through GSK3β, plays the most critical role in resistance to pan-PI3K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrine-related cancer

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2007